» тюнинг | сделать стартовой  » тюнинг | в избранное
»  Обратная связь
»  Реклама
»  Расширенный поиск
Представиться: логин : пароль : Напомнить пароль? Регистрация
ГЛАВНАЯ
тюнинг » ремонт двигателя иномарок » дефектация деталей двигателей и дальнейший ремонт » Технология измерения основных деталей двигателей
•  РАЗДЕЛЫ ТЮНИНГА
 

Основное
» тюнинг
»  советы
»  новости
»  видео
»  результаты опросов
»  безопасность
»  авто барахолка
»  каталог фирм

Тюнинг ваз
»  тюнинг ваз
»  внешний тюнинг
»  автозвук
»  тюнинг двигателя
»  тюнинг салона
»  тюнинг ходовой
»  тюнинг КПП
»  тюнинг ВАЗ "Самара"
»  примеры тюнинга

Ремонт автомобилей
»  ремонт и эксплуатация ГАЗ 3110
»  ремонт Audi 100/A6
»  ремонт ВАЗ 2110
»  изнашивание и ремонт ВАЗ классика
»  ремонт нивы
»  ремонт двигателя иномарок

Примеры тюнинга ваз
»  тюнинг ваз 2101
»  тюнинг ваз 2102
»  тюнинг ваз 2103
»  тюнинг ваз 2105
»  тюнинг ваз 2113

Разное про ОКА
»  ока тюнинг
 
• ПРИМЕРЫ ТЮНИНГА
внешний тюнинг ваз 2103
внешний тюнинг автомобиля ваз 2103
внешний тюнинг ваз 2103


 
• НОВОСТИ ТЮНИНГА

 Инноваторство в стиле Mitsubishi
Иметь автомобиль хорошо, а иметь хороший автомобиль ещё лучше. Данный лозунг идеально вписывается в концепцию автомобильной марки Mitsubishi, которая постоянно радует автолюбителей великолепными машинами и новшествами в сфере автопрома.

Теперь Лада Калина оснащена системой безопасной парковки (парктроником)

Август 2011 принёс официальным дилерам крупнейшего представителя отечественного автопрома «АвтоВАЗ» новую партию автомобилей Лада Калина, оснащённых парковочным радаром, чаще называемым парктроником. Нововведение устанавливается на авто максимальной комплектации, в общем в конце июля «АвтоВаз» выпустил таковых обновлённых вариантов полсотни хетчбеков и 68 универсалов.


Новые модификации автомобиля Lada Kalina ВАЗ на Московском тюнинг-шоу 2011
Шоу проходило 15-17 апреля текущего года. Представлены на нём были как ведущие «мэтры» мирового автопрома, так наш родной ВАЗ удивил нас двумя тюнинговаными «Калинами» – раллийная «Калина» и Kalina Sport, которые предусмотрены в основном для и могут представлять интерес для спортсменов. А вот третий образец «Калины» - VRS может понравиться широкому кругу автомобилистов.


Разрешенная тонировка
Тонировка стекол позволяет подчеркнуть индивидуальность вашего железного зверя, выгодно выделяя его на фоне прочих однообразных и одинаковых конвейерных авто. Автотонировка представляет собой технологический процесс по затемнению стекол путем обработки полимерами, либо оклеиванием металлизированной пленкой.

Круче только яйца
Круче только яйцаВ продолжении, текст реального объявления


 

Разделы: основы ремонта двигателяразборка двигателя дефектация деталей двигателейспособы ремонта и восстановления деталей двигателя
ремонт двигателя иномарок » дефектация деталей двигателей и дальнейший ремонт

Технология измерения основных деталей двигателей

Технология измерения основных деталей двигателей

Рассмотрим более подробно технологию измерения и контроля основных деталей двигателя, пользуясь табл. 8.2.
У коленчатого вала предварительно следует визуально проверить состояние поверхности шеек. Глубокие риски (рис. 8.1) обычно свидетельствуют о необходимости его ремонта, даже если измерение не показывает заметного износа. В то же время гладкая поверхность шеек совершенно не означает, что вал не изношен - известны случаи, когда при практически идеальном внешнем состоянии шейки имели недопустимый износ, а вал в целом - большую деформацию.
Деформация вала контролируется на призмах стойкой с индикатором, имеющим удлиненную ножку (рис. 8.2). При измерении вал следует установить на крайние коренные шейки. Далее, уперев ножку индикатора поочередно в середину одной из средних шеек, вал поворачивается на один оборот. Максимальное отклонение стрелки (между крайними значениями) показывает биение шейки. Если на шейке наблюдается неравномерный по ширине износ, то обычно он меньше в середине, где и следует проводить измерение. Ближе к краям коренной шейки на результат измерения может повлиять овальность шейки из-за неравномерного износа.
Допустимое биение средних коренных шеек вала относительно крайних не превышает обычно 0,05-^0,06 мм. Учитывая, что новые валы имеют биение менее 0,010-^0,015 мм, рекомендуется при биении свыше 0,04-5-0,05 мм ремонтировать вал (см. раздел 9.4.).
Помимо биений средних шеек необходимо проверить биение хвостовика и поверхностей под сальники (рис. 8.3). Это
особенно важно для уже ранее ремонтированного вала. Вследствие неквалифицированного ремонта вспомогательные поверхности могут иметь большое биение относительно коренных шеек, что может повлиять не только на ремонтный размер вала, но и на технологию его последующего ремонта в целом (разделы 9.3., 9.4.). Взаимное биение крайних коренных шеек и вспомогательных поверхностей (хвостовик, поверхности под сальники и др.) не должно превышать 0,02-^0,03 мм, иначе невозможно обеспечить ресурс уплотнений вала и элементов привода распределительного вала (ремень, цепь, натяжитель и т.д).
Взаимные биения шеек и поверхностей коленчатого вала можно также проверить в неподвижных центрах в токарном станке, однако такой способ проверки более целесообразен при подготовке вала к ремонту (см. разделы 8.2., 9.3. и 9.4.).
Размеры шеек вала удобно измерять микрометром (рис. 8.4). При измерении следует установить микрометр на шейку и вращать измерительную головку прибора до появления характерных щелчков "трещотки", ограничивающей усилие сжатия шейки губками прибора. Одновременно необходимо слегка покачивать прибор в двух плоскостях в окружном и осевом направлении, чтобы исключить погрешность от неточной установки прибора. Чрезмерное усилие сжатия шейки прибором дает уменьшение, а перекос при установке - увеличение измеренного диаметра по сравнению с истинным.
Более точные измерения могут быть выполнены рычажной скобой - пассаметром (см. раздел 5.2.), имеющим в 5-И О раз меньшую цену деления и исключающим влияние усилия сжатия детали на результат измерения.
Размеры шатунных шеек всегда определяются в двух направлениях - примерно по радиусу кривошипа и перпендикулярно ему (рис. 8.5), что необходимо для определения овальности. Минимальный размер шейки с большой овальностью обычно оказывается вблизи направления радиуса кривошипа со смещением на 20^40° против вращения вала (рис. 8.6).
Допустимая овальность шеек не превышает обычно 0,010^-0,015 мм, при этом минимальный размер не должен выходить более чем на 0,010 мм за нижний (минимальный) размер.
Технология измерения основных деталей двигателей






Рис. 8.1. Задир на шатунной шейке коленчатого вала 

Технология измерения основных деталей двигателей






Рис. 8.3. Контроль биения хвостовика на призмах 
Технология измерения основных деталей двигателей







Рис. 8.7. Проверка микрометра с помощью плоскопараллелыной меры длины
Технология измерения основных деталей двигателей






Рис. 8.8. Измерение толщины вкладыша микрометром через шарик
Технология измерения основных деталей двигателей






Рис. 8.9. Измерение распрямления вкладыша штангенциркулем
Чтобы точно определить начальный (стандартный) размер шеек, следует пользоваться справочной литературой, в том числе данными Приложения 1.
У коленчатого вала необходимо также проверить состояние торцевых поверхностей упорного подшипника (подпятника). Нередко на заднем, наиболее нагруженном, торце наблюдается ощутимый износ, который может потребовать расшли-фовки торцов и применения ремонтных упорных полуколец увеличенной толщины (см. раздел 9.4.).
Чтобы исключить ошибки при измерении, перед каждой серией замеров (например, перед дефектацией каждого двигателя) микрометр следует проверить и при необходимости настроить. Для этого используется мера длины, прикладываемая к микрометру, либо набор плоскопараллельных мер (рис. 5.17). При проверке микрометра его показания должны совпадать с длиной меры с точностью в половину деления шкалы, т.е ±0,005 мм (рис. 8.7). Если расхождение больше, следует расконтрить измерительную головку и настроить прибор.
Если в результате контроля состояния коленчатого вала окажется, что он не требует ремонта, следует проконтролировать состояние вкладышей - они не должны иметь следов износа, задиров и посторонних включений на рабочей поверхности, в противном случае их следует заменить. В общем случае при пробеге автомобиля более 150 тыс. км вкладыши лучше менять даже тогда, когда их состояние близко к идеальному. Это связано с постепенным внедрением в мягкую рабочую поверхность вкладышей мелких твердых частиц, ускоряющих абразивный износ шейки вала, а также усталостным выкрашиванием рабочей поверхности вкладышей.
Если предполагается оставить старые вкладыши, то не помешает измерить их толщину и определить износ. Для этого можно использовать различные приборы, в том числе толщиномер или специальный микрометр, имеющий закругление одной из измерительных поверхностей (рис. 5.31 и 5.32). Наиболее простой способ измерения толщины вкладышей - с помощью микрометра и шарика от подшипника (рис. 8.8). Толщина вкладыша при этом будет равна разнице показаний микрометра (или пассаметра) со вкладышем и шариком и без вкладыша. Измеренную толщину следует сравнить с известной для данного двигателя (см. Приложение 1). Толщина вкладышей может быть также определена после измерения диаметра постели и диаме-тра в подшипнике (т.е. постели с установленными в нее вкладышами). Помимо толщины необходимо определить так называемое распрямление вкладышей, т.е. разницу между наружным диаметром вкладыша в свободном состоянии (см. рис 8.9) и диаметром постели. Если распрямление меньше 0,4+0,5 мм, то вкладыши лучше заменить, т.к. они не будут обеспечивать натяг, необходимый для их надежной посадки в постели.
Измерение диаметра цилиндров осуществляется нутромером. Перед измерением нутромер должен быть настроен на ноль, т.к. он является относительным прибором. Как уже указывалось в разделе 5.4., это может быть сделано несколькими способами - с помощью микрометра, кольцевого калибра или специального установочного прибора.
Наиболее простым (но не лучшим) способом является настройка с помощью микрометра. Для этого вначале микрометр настраивается на округленный размер, близкий к диаметру цилиндра (приближенно диаметр цилиндра можно измерить штангенциркулем). Далее нутромер устанавливается так, чтобы его ножки опирались на измерительные поверхности микрометра (рис. 8.10). Покачиванием микрометра в двух плоскостях следует заметить крайнее (в направлении по часовой стрелке) положение стрелки индикатора нутромера, с которым затем совместить ноль шкалы индикатора ее поворотом. Настройка нутромера с помощью кольцевого калибра (рис. 5.25) уже описывалась в разделе 5.4. Как указывалось ранее этот способ применим на практике весьма ограниченно из-за необходимости иметь очень большое количество калибров, тем большее, чем больше номенклатура ремонтируемых двигателей. Удобны для настройки нутромеров и установочные приборы (рис. 5.26), однако пока они встречаются редко.
При измерении диаметра цилиндра нутромером (рис. 8.11) необходимо избегать ошибок, допускаемых неопытными механиками и связанных с неправильным отсчетом показаний индикатора. Произвольно установленный в цилиндр нутромер всегда показывает завышенный размер за счет перекоса оси измерительных поверхностей относительно плоскости поперечного сечения (рис. 8.12). При этом стрелка индикатора отклонена от нуля в направлении против часовой стрелки. Покачиванием нутромера в вертикальной плоскости следует найти крайнее положение стрелки, дальше которого она не отклоняется (в направлении по часовой стрелке). Если указанное крайнее положение стрелки индикатора отклонено от нуля на N делений в сторону против часовой стрелки, то искомый диаметр цилиндра
D = D0 + N • Д мм,
Технология измерения основных деталей двигателейРис. 8.15. Измерение диаметра постелей блока нутромером
где D0 - размер, которому соответствует ноль индикатора нутромера;
Д - цена деления индикатора.
Отклонения от нуля на N делений в противоположную сторону (по часовой стрелке) означает, что диаметр цилиндра меньше размера, на который настроен нутромер:
D = D0 - N ¦ Д мм.
Диаметр цилиндра измеряется в нескольких сечениях. Наименее изношена нижняя часть цилиндра в сечении ниже маслосъемного кольца при положении поршня в НМТ Минимальный износ в этом сечении (и, соответственно, минимальный размер цилиндра) соответствует положению оси ножек нутромера параллельно оси коленчатого вала (рис. 8.13). В пер-пендикулярной плоскости (в плоскости вращения кривошипа) размер цилиндра обычно больше вследствие износа из-за трения юбки поршня. Разница между указанными размерами определяет овальность цилиндра.
Наибольший износ цилиндра нередко наблюдается в зоне остановки верхнего кольца при положении поршня в ВМТ. Размер цилиндра в этом сечении обычно не удается определить точно из-за несоответствия профиля поверхности форме ножек нут-ромера (рис. 8.14). Кроме того, в большинстве случаев износ по окружности оказывается неравномерным. Это необ-
ходимо учитывать при последующем определении ремонтного размера цилиндра (см. раздел 9.5.).
Если износ цилиндров небольшой (менее 0,05*0,06 мм), следует проверить состояние самой поверхности цилиндров. Только в случае отсутствия продольных рисок на поверхности можно в дальнейшем использовать поршни и кольца стандарт-
ного размера. В практике ремонта известны случаи, когда при износе цилиндров всего на 0,01*0,02 мм их поверхность была настолько "затерта", т.е. повреждена мелкими рисками, что после установки новых стандартных колец и поршней расход масла оказывался выше 1,0*1,5 л на 1000 км пробега.
Диаметр цилиндров подавляющего большинства двигателей имеет допуск на "+" относительно стандартного значения (в пределах 0*0,02 мм). Об этом следует помнить при проведении измерений.
Размеры постелей подшипников на этапе дефектации контролируются для того, чтобы установить их деформацию и определить необходимость ремонта (рис. 8.15). Перед измерением необходимо протереть плоскости разъема деталей и равномерно затянуть болты крышек рабочим моментом. В остальном методика измерения аналогична описанной выше для цилиндров. Особое внимание при этом следует уделять опорам со следами износа (проворачивания вкладышей) и перегрева (черный цвет на поверхности постели или около нее). В подобных случаях, помимо контроля диаметра, следует проверить несоосность опор. Для этого используется лекальная линейка. Она устанавливается на три рядом стоящие опоры строго параллельно их оси (рис. 8.16). Несоосность и/или деформация ищется покачиванием линейки на средней из выбранных трех опор. Если пинейка начинает "качаться" на одной из опор, для определения несоосности следует пользоваться набором щупов. Допустимым является такой дефект, при котором линейка "качается" не более чем на 0,02 мм, в противном случае опоры требуют ремонта (см. раздел 9.5.).
Размеры нижних головок шатунов контролируются нутромером после затягивания гаек или болтов крышек рабочим моментом (рис. 8.17). При измерении следует ориентироваться на данные справочной литературы (см. Приложение 1). После длительной эксплуатации отверстия нижней головки вытягиваются на 0,01*0,03 мм в направлении оси стержня шатуна, поэтому, как правило, шатуны требуют ремонта независимо от их внешнего вида. Если в шатуне произошло проворачивание вкладышей, то даже при сохранении размера отверстия ремонт обязателен, так как риски на поверхности отверстия нарушают плотность прилегания вкладышей.
Отверстия верхней головки шатунов также требуют обязательного контроля. Для шатунов с неподвижной посадкой пальца необходимо убедиться в том, что натяг старых пальцев после их выпрессовки не стал менее 0,015*0,020 мм. В противном случае шатуны следует менять, либо устанавливать пальцы увеличенного диаметра, что требует соответствующей доработки поршней. У шатунов с плавающим пальцем измерение диаметра отверстия верхней головки позволяет определить, требуется ли замена втулок.
Технология измерения основных деталей двигателей






Рис. 8.18. Измерение диаметра (износа) поршневого пальца рычажной скобой-пасса-метром
Технология измерения основных деталей двигателей






Рис. 8.20. Проверка деформации шатуна с помощью лекальной линейки
Технология измерения основных деталей двигателей






Рис. 8.22. Контроль выступания дисков мас-посъемного кольца над наружной поверхностью расширителя
Диаметр и износ поршневого пальца измеряются пассаме-тром (рис. 8.18) с точностью до 0,002 мм. Износ определяется как разница в диаметрах рабочей (блестящей) и нерабочей (темной) поверхностей. При этом следует учитывать возможность неравномерного износа и деформации пальцев, вследствие чего наружная поверхность становится эллипсной. Износ и «эллипс» пальцев не должны превышать 0,010 мм, в противном случае пальцы должны быть заменены.
Особое внимание должно быть уделено контролю деформации стержней шатунов, для чего следует использовать специальные измерительные приборы (рис. 5.38 и 5.39). При их отсутствии для грубой (качественной) проверки наличия деформации можно использовать плоскую поверхность (например, поверочную плиту). При установке на плиту деформированный шатун "качается" так, как показано на рис. 8.19. Несколько более достоверные результаты дает проверка "на просвет" с помощью лекальной линейки (рис.

загрузка...
8.20), однако оба способа неприемлемы для количественной оценки степени деформации, необходимой для правки деформированных шатунов (см. раздел 9.4). При измерении деформации шатунов специальным прибором непараллельность осей верхней и нижней головок не должна превышать 0,02+0,03 мм на длине, равной диаметру цилиндра. Следует также отметить, что контроль на плите шатуна с закрученным стержнем обычно не дает характерного "качания", поэтому данный способ не всегда является достоверным не только с количественной, но и с качественной стороны.
Износ наружной поверхности колец легко проверяется по величине замка при установке колец в неизношенную часть цилиндра. Обычно для этого используется верхняя часть цилиндра, которую необходимо очистить от нагара. Зазор в замке измеряется с помощью набора щупов (рис. 8.21).
У большинства двигателей ширина замка колец, установленных в цилиндр, не должна превышать 0,7+0,8 мм, в противном случае кольца должны быть заменены. У наборных маслосъем-ных колец допустимая ширина замка больше - обычно до 1,2+1 ,4 мм. У таких колец необходимо также проверять выступание дисков над двухфункциональным расширителем и замок дисков, ус-тановленных с расширителем в канавку поршня, в свободном состоянии (рис. 8.22). Если на расширителе есть следы касания ци-пиндра, маслосъемные кольца также должны быть заменены. Величина замка дисков на поршне в свободном состоянии у нор-мально работающих колец не должна быть меньше 2,0+2,5 мм. Меньшая величина замка свидетельствует о деформации расши-
рителя, и такие кольца также должны быть заменены.
Интересно отметить, что этим же способом можно довольно точно определить износ верхней части цилиндра. Если измерить ширину замка кольца в изношенной 6-| и неизношенной 60 частях цилиндра, то износ цилиндра (по диаметру):
6D = (bi -80)/3,14159.
Износ колец по торцевым поверхностям нетрудно измерить микрометром (рис. 8.23). Обычно ощутимо изнашивается нижний торец верхних компрессионных колец. Если износ превышает 0,015+-0.020 мм, то кольца следует заменить независимо от величины их замка в цилиндре. Для определения величины износа необходимо знать высоту новых колец. При отсутствии справочных данных следует ориентироваться на стандартный ряд высот и допуски на них. Поскольку кольца изнашиваются неравномерно по ширине, следует раздельно измерить высоту по всей ширине кольца и у внутреннего края (рис. 8.23).
Для обеспечения высоких эксплуатационных параметров двигателя, включая малый расход масла, очень важен осевой зазор колец в канавках поршня. Из практики известно немало примеров, когда при незначительном износе цилиндров и юбок поршней износ верхних канавок превышает 0,20+0,25 мм, что вызывает большой расход масла из-за "насосного" эффекта.
Измерение высоты канавки поршня удобно выполнять с помощью набора плиток - плоскопараллельных мер длины (рис. 5.17). Подбором плиток необходимой толщины следует добиться, чтобы одна или две составленные вместе плитки плотно входили в канавку (рис. 8.24). Тогда высота канавки поршня соответствует размеру плитки Н1. Зазор 6 в канавке легко рассчитать:
8 = Н1-Н,
где Н - высота кольца. Если даже с новым кольцом зазор в верхней канавке превышает 0,09+0,10 мм для бензиновых и 0,12+0,13 мм для дизельных двигателей, следует заменить поршни (альтернативный способ - установка колец увеличенной высоты - рассмотрен в разделе 9.5.). Менее точно можно измерить зазор непосредственно, с помощью кольца и набора щупов.
Технология измерения основных деталей двигателей






Рис. 8.24. Измерение высоты канавки поршня с помощью плоскопараллельной меры длины (плитки)
Технология измерения основных деталей двигателей






Рис. 8.27. Измерение зазора между шестерней и корпусом маспонасоса
Технология измерения основных деталей двигателей






Рис. 8.30. Контроль износа шеек распределительного вала
Контроль деталей масляного насоса выполняется, в основном, с помощью лекальной линейки и набора щупов. Для работоспособности насоса наиболее важен торцевой зазор между шестернями и корпусом, который не должен превышать 0,08+0,09 мм. Он проверяется так, как показано на рис. 8.25. Следует также измерить диаметр ведущего валика и отверстия в корпусе, чтобы определить зазор в соединении (рис. 8.26). Радиальный зазор между шестернями и корпусом можно измерить щупом (рис. 8.27). Если величины этих зазоров превышают 0,07+0.08 мм, насос требует ремонта или замены.
Редукционный клапан системы смазки проверяется визуально (рис. 8.28). Плунжер клапана не должен иметь следов заеданий в корпусе, а уплотняющая кромка (седло) клапана - дефектов (раковин, глубоких царапин и др.), которые могут вызвать не-герметичность клапана в закрытом состоянии (на некоторых двигателях это может нарушить подачу масла при запуске).
При проверке состояния деталей двигателя следует уделить особое внимание распределительному механизму и его приводу, поскольку эта часть двигателя может иметь достаточно большое число неисправностей. Наибольшее влияние на шумность двигателя оказывает состояние распределительного вала и ответных ему деталей - толкателей и опор (подшипников). Зазоры в подшипниках распределительного вала определяются по результатам измерения диаметров отверстий опор (рис. 8.29) и шеек распределительного вала (рис.
8.30). Эти зазоры не должны превышать 0,09+0,10 мм. Если зазоры увеличены, необходимо выяснить с помощью справочной литературы номинальные размеры деталей, чтобы определить, какая деталь изношена сильнее - нередко замена распределительного вала восстанавливает зазор в подшипниках до нормального.
У двигателей с нижним расположением распределительного вала (OHV), а также у некоторых двигателей ОНС с чугунными головками (FORD) распределительный вал вращается во втулках, запрессованных в блок (головку). Практика показывает, что в отличие от алюминиевых головок, где износ больше у шеек вала, здесь сильнее изнашиваются втулки. После пробега более 200+250 тыс. км у многих двигателей OHV зазоры в подшипниках распределительного вала могут превышать 0,20+0,25 мм при внешне вполне удовлетворительном состоянии поверхности втулок. Если при ремонте зазоры в подшипниках не будут восстановлены, например, заменой втулок, в дальнейшем это приводит к значительному снижению давления масла и. не исключено, ресурса двигателя после ремонта.
Помимо диаметров опорных шеек, у распределительного вала обязательно следует проконтролировать их взаимное биение (рис. 8.31). После обрыва ремня привода, деформации и/или поломки клапанов деформация распределительного
Технология измерения основных деталей двигателей



Технология измерения основных деталей двигателей






Рис. 8.33. Изношенные рабочие поверхности толкателей (указаны стрелкой): а — цилиндрического; б — коромысла
Технология измерения основных деталей двигателей






Рис. 8.35. Измерение диаметра отверстия коромысла
Технология измерения основных деталей двигателей






Рис. 8.37. Контроль износа рабочей фаски клапана "на просвет" с помощью лекальной линейки
вала у некоторых двигателей (например, дизелей) может превышать 0,15+0,20 мм. Очевидно, сборка двигателя с дефор-мированным распределительным валом приведет в дальнейшем к нестабильности зазоров в клапанном механизме, шум-ности и быстрому износу подшипников.
Кулачки распределительного вала требуют, в основном, визуального контроля. Вершины кулачков должны быть плавными, без "огранки". Можно определить износ кулачка, если измерить его высоту (рис. 8.32) и сравнить ее с высотой других кулачков, не имеющих явного износа.
Рабочие поверхности толкателей (рычагов, коромысел), контактирующие с кулачками, контролируются визуально (рис. 8.33). В большинстве случаев сильный износ кулачка распределительного вала сопровождается износом толкателя, хотя повышенный износ толкателей возможен и без заметного износа кулачков. Изношенные детали в дальнейшем должны быть заменены или, в крайнем случае, отремонтированы (см. раздел 9.6.). Установка изношенных деталей распределительного механизма обычно приводит к повышенной шумности работы двигателя.
В конструкциях с коромыслами следует также определить износ осей коромысел, измерив микрометром их диаметр в изношенном и неизношенном сечениях (рис. 8.34). Когда износ превышает 0,02-5-0,03 мм, ось необходимо заменить (аль-тернативные варианты описаны в разделе 9.6.). Отверстие коромысла также следует проверить нутромером (рис. 8.35) и определить зазор по изношенной и неизношенной поверхностям оси. Если во втором случае зазор в соединении больше 0,06+0,07 мм, то замена оси, очевидно, не восстановит зазор до нормального (0,02+0,04 мм). Тогда следует заменить или, в крайнем случае, отремонтировать коромысла (раздел 9.6.)
В конструкциях с цилиндрическими толкателями следует проверить зазор толкателя в отверстии (гнезде) - он не должен превышать 0,08+0,10 мм. Повышенные зазоры в соединении являются причиной шумной работы двигателя, ускоренного износа клапанов и направляющих втулок. Если речь идет о гидро-толкателях, то возможны стуки клапанов на низких частотах вращения из-за нарушения подачи масла к гидротолкателям.
Большое внимание необходимо уделить клапанам, направляющим втулкам и седлам клапанов. От состояния этих деталей зависят основные параметры двигателя (мощность,

расход топлива), расход масла, шумность. Начинать проверку клапанного механизма следует со стержней клапанов (рис. 8.36). Сравнив диаметр стержня в верхней неизношенной части (над отполированной маслоотражательным колпачком поверхностью, но ниже канавки для сухарей) и в нижней, можно определить износ стержня. При измерении в нижней части стержня необходимо сделать несколько измерений по окружности, т.к. износ часто бывает неравномерным. Износ стержня более 0,02+0,03 мм можно считать критическим, т.е. требующим замены клапана.
Износ фаски клапана определяется визуально (рис. 8.37), достаточно приложить к фаске лекальную линейку Вогнутость фаски указывает на износ и необходимость ремонта или замены клапана. Седло обычно повторяет форму фаски клапана, поэтому при большой вогнутости фаски седло необходимо править.
Износ отверстия направляющей втулки клапана может быть определен прямым измерением нутромером или косвенным методом. Прямое измерение (рис. 8.38) не всегда удается из-за трудности приобретения нутромера для измерения отверстий малого диаметра (6+9 мм). Косвенный метод более доступен, т.к. требует измерения поперечного хода люфта тарелки клапана с помощью индикатора (рис. 8.39).
Учитывая, что L примерно равно /, получим 8 = А/3 Таким образом, в малоизношенной втулке люфт клапана не будет превышать 0,15+0,18 мм, если зазор во втулке нормальный (0,04+0,05 мм). По результатам измерений износа стержня и зазора между стержнем и втулкой можно сделать вывод о необходимости замены клапанов и/или направляющих втулок. Помимо износа клапанов следует проверить их деформацию. Для этого обычно бывает достаточно повернуть клапаны на призмах - даже небольшая деформация легко обнаруживается визуально, но лучше для этого использовать специальные приборы (рис. 8.41).
Технология измерения основных деталей двигателей






Рис. 8.38. Измерение диаметра направляю¬щей втулки клапана нутромером
Технология измерения основных деталей двигателей






Рис 8.40. Схема косвенного измерения зазора между стержнем клапана и направляющей втулкой по люфту клапана во втулке: D — люфт тарелки, d — зазор во втулке; L — расстояние от втулки до тарелки; I — длина втулки
Технология измерения основных деталей двигателейРис. 8.42. Проверка деформации плоскости головки блока с помощью лекальной линейки и набора щупов
У длительно работавших двигателей иногда наблюдается деформация пружин клапанов, что вызывает уменьшение жесткости пружин, вызывающее повышение динамических нагрузок на клапаны и детали их привода. Пружины нетрудно проверить, измерив их длину в свободном состоянии, однако для этого необходимо иметь соответствующие данные, в частности, подробную литературу по ремонту конкретного двигателя.
При дефектации двигателя обязательно проверяются плоскости блока и головки цилиндров. Проверка выполняется при помощи лекальной линейки и набора щупов. Линейка кладется на плоскость по диагонали (рис. 8.42), а в щель между ней и поверхностью устанавливается щуп соответствующей толщины. Если щуп толщиной 0,05+0,06 мм свободно выходит из-под линейки, плоскость требует обработки. У блоков после длительной эксплуатации может наблюдаться небольшой "провал" на плоскости между цилиндрами и "возвышение" у отверстий болтов крепления головки. У головок деформация часто связана с перегревом двигателя и выражается в "провале" в средней части плоскости.
При сильных перегревах головка может деформироваться не только по плоскости стыка с блоком, но и по верхней плоскости и, в частности, по постелям распределительного вала. Несоосность постелей в головке контролируется также, как и в блоке (рис. 8.16). Деформация постелей свыше 0,02+0,03 мм требует их ремонта (см. раздел 9.6.). Если деформированные постели не отремонтировать, значительно возрастают нагрузки и износ подшипников. Кроме того, возможно усталостное разрушение распределительного вала после непродолжительной эксплуатации, т.к., вращаясь в несоосных опорах, он испытывает большие знакопеременные изгибающие нагрузки.
После разборки двигателя не все прокладки и сальники могут потребовать замены. Если прокладка головки заменяется в обязательном порядке независимо от ее состояния (иначе невозможно обеспечить герметичность стыка головки с блоком), то прокладки поддона, крышки головки и некоторые другие в ряде случаев сохраняются и могут быть использованы повторно без потери герметичности. Это характерно, в основном, для двигателей с небольшим пробегом, у которых, прежде всего, сальники валов могут быть неизношены и также использованы повторно. Поэтому при выполнении дефектации двигателя целесообразно проверить состояние уплотни-тельных деталей. Следует также проконтролировать состояние сцепления - очевидно, что устанавливать изношенные детали сцепления на отремонтированный двигатель совершенно бессмысленно. Точно также нельзя рассчи-
тывать на качественный ремонт двигателя, если его опоры ("подушки") повреждены или разрушены - это приведет к высокому уровню вибраций кузова и "некомфортным" условиям для водителя.
На основании результатов контроля всех деталей двигателя можно сделать выводы о необходимости их ремонта или замены. Практика показывает, что результаты всех проверок удобно свести в таблицы, разделив ремонтируемые и заменяемые детали. При этом ремонтные размеры некоторых деталей могут быть указаны только приближенно. При одновременном ремонте большого числа двигателей составление подобных таблиц позволяет уменьшить вероятность ошибок, связанных с несвоевременным ремонтом или заказом новых деталей.
Окончательное решение о ремонте или замене на новую той или иной детали нередко связано с двумя важными факторами - наличием ремонтной базы с квалифицированным персоналом и возможностью поставки необходимой детали. Для редких и старых двигателей ремонт более целесообразен как по экономическим соображениям, так и в связи с трудностями получения новых деталей. Для широко известных и распространенных двигателей возможны все варианты, а для новых моделей нередко приходится рассчитывать на замену деталей, в том числе и из-за отсутствия ремонтных размеров комплектующих. Так или иначе, решение во многом зависит от возможностей ремонтирующей организации и квалификации персонала, выполняющего ремонт.




Также посмотрите другие статьи из категории ремонт двигателя иномарок » дефектация деталей двигателей и дальнейший ремонт


 
Добрый день, мы знакомы? Не узнаю Вас в маске. Представьтесь пожалуйста или присоединяйтесь к нам


Другие новости по теме:



Комментарии к "Технология измерения основных деталей двигателей"

 

Информация
 
Посетители, находящиеся в группе Гости, не могут оставлять комментарии в данной новости. Для того, чтобы зарегистрироваться, перейдите по ссылке.
 

•  ОБЛАКО ТЕГОВ
 
•  РЕКОМЕНДУЕМ
тюнинг
тюнинг ваз
внешний тюнинг
тюнинг аудиосистемы
тюнинг двигателя
тюнинг салона
тюнинг ходовой
тюнинг КПП
тюнинг ВАЗ 2115
ремонт нивы
 
• РЕМОНТ ВАЗ
 Дайте совет!
Люди дайте совет!!!

Снятие и установка блока цилиндров ваз 2112
Снятие и установка блока цилиндров ваз 2112Если износ цилиндров или шеек коленчатого вала превышает допустимый, то в этих случаях необходима расточка цилиндров блока и шлифовка шеек коленчатого вала под ремонтный размер, для чего требуется снять эти детали с автомобиля.

Снятие, разборка, сборка и установка масляного насоса ваз 2112
Снятие, разборка, сборка и установка масляного насоса ваз 2112 Снятие
1. Снимаем зубчатый шкив коленчатого вала и его шпонку (см. "Передний сальник коленчатого вала – замена").
2. Снимаем поддон картера двигателя (см. выше, "Поддон картера двигателя – снятие и установка, замена прокладки").


Снятие и установка маслозаборника ваз 2112
Снятие и установка маслозаборника ваз 2112 Снятие
1. Снимаем поддон картера двигателя (см. выше, "Поддон картера двигателя – снятие и установка, замена прокладки").
2. Ключом на 10 мм отворачиваем два болта (1) крепления маслозаборника к крышке коренного подшипника и болт (2) крепления маслоприемника к корпусу масляного насоса.


Снятие и установка поддона картера двигателя, замена прокладки ваз 2112
Снятие и установка поддона картера двигателя, замена прокладки ваз 2112Снятие
1. Снимаем брызговик двигателя (см. "Брызговик двигателя – снятие и установка").
2. Сливаем масло из двигателя (см. "Система смазки – замена масла и масляного фильтра").
3. Снимаем нижнюю крышку картера сцепления (см. "Коробка передач – снятие и установка").....